Improved methods of estimating critical indices via fractional calculus

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 354429
(http://iopscience.iop.org/0305-4470/35/20/304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.107
The article was downloaded on 02/06/2010 at 10:10

Please note that terms and conditions apply.

Improved methods of estimating critical indices via fractional calculus

S K Bandyopadhyay and K Bhattacharyya ${ }^{1}$
Department of Chemistry, Burdwan University, Burdwan 713 104, India
E-mail: chemkbbu@yahoo.com (K Bhattacharyya)

Received 10 January 2002, in final form 11 April 2002
Published 10 May 2002
Online at stacks.iop.org/JPhysA/35/4429

Abstract

Efficiencies of certain methods for the determination of critical indices from power-series expansions are shown to be considerably improved by a suitable implementation of fractional differentiation. In the context of the ratio method (RM), kinship of the modified strategy with the ad hoc 'shifted' RM is established and the advantages are demonstrated. Further, in the course of the estimation of critical points, significant betterment of convergence properties of diagonal Padé approximants is observed on several occasions by invoking this concept. Test calculations are performed on (i) various Ising spin- $1 / 2$ lattice models for susceptibility series attended with a ferromagnetic phase transition, (ii) complex model situations involving confluent and antiferromagnetic singularities and (iii) the chain-generating functions for self-avoiding walks on triangular, square and simple cubic lattices.

PACS numbers: 02.30.Sa, 05.70.Jk, 75.40.Cx

1. Introduction

Given the first few (up to $n=N$) coefficients f_{n} of a power-series representation of some function $F(x)$ in the form

$$
\begin{equation*}
F(x)=\sum_{n=0} f_{n} x^{n}, \tag{1}
\end{equation*}
$$

it is often [1-10] of interest to estimate the radius of convergence (X) and examine the nature of singularities in $F(x)$. Important situations in chemical physics involve the virial series and studies on condensation [1,2], self-avoiding walks [3,4] and the susceptibility series for various lattice models exhibiting magnetic phase transitions [4-10]. Determination of critical

[^0]indices, e.g. the critical point X and the critical exponent λ, on the basis of an assumed, but widely accepted, form for $F(x)$:
\[

$$
\begin{equation*}
F(x) \cong A\left(1-\frac{x}{X}\right)^{\lambda} \tag{2}
\end{equation*}
$$

\]

as $|x| \rightarrow X$, has thus emerged as an active area of research over recent decades. In (2), A is the critical amplitude, the exponent λ is usually a non-integer and satisfies $\lambda<0$, and X defines the dominant singularity closest to the origin. Various methods are available to tackle the problem (see, e.g., $[4,5]$ and references therein). However, we shall be concerned here with two simple strategies. One of these is the ratio method (RM) [6]. It is perhaps the simplest, oldest and the most favoured tool. On its own, however, the scheme performs fairly well. Coupled with a sequence accelerator, the RM can offer more satisfactory results [4, 5]. In complex situations, undesirable singularities in $F(x)$ are mapped away, before employing the RM, by using a change of variable at the onset; refinements were subsequently made $[7,8]$ in other respects too. Of these, one specific variant, the shifted RM (SRM) [5, 8], rests on the $a d$ hoc introduction of a parameter s that is either arbitrarily held fixed (at $s=0.5$) to improve the convergence of the values sought [5], or optimized [8]. The SRM possesses an edge over other ratio-type methods in that it retains the essential simplicity of the RM. We now turn our attention to the other strategy, which is based on Padé approximants (PA) [11]. The PA have been employed in various ways $[4,5,9]$ to tackle the problem to hand. Here we choose a simple route. From (1), if we define ratios $R_{n}=f_{n} / f_{n-1}$, the sequence of values of R_{n} would approach a limit R_{∞} and X may be defined as $X=1 / R_{\infty}$. Sequences of diagonal PA (DPA) of a given parent sequence are known to converge much better [11,12] on several occasions. Therefore, we expect better estimates of R_{∞}, and hence of X, by forming such DPA sequences. A 'biased' scheme [4] may subsequently be adopted to find λ.

From (1) and (2), we notice that, if $F(x)$ is k-times differentiated, the position of the singularity does not change. The alterations in λ and A are also known. So, one may be tempted to explore whether the use of such $D^{k} F(x)$ series $(k=1,2, \ldots)$ are beneficial in providing nicer estimates of X, λ and A. One disadvantage is, however, immediate. The known number of coefficients decreases from N to $(N-k)$. Therefore, a posteriori application of some convergence accelerator [4,5,9,11-13] would be generally less profitable. As we shall see presently, one can avoid the difficulty by invoking the concept of fractional differentiation [14-18]. It has two advantages: it does not reduce the number of terms; moreover, an extra parameter k is embedded in a technique that can be chosen profitably. Fractional calculus (see [18] for a recent review) has so far been employed in areas such as electrochemistry [14], diffusion [15] and scaling in phase-transition processes to generalize [16] Ehrenfest's classification. Our endeavour highlights a new area of application of the same.

The aim of the present paper is threefold. First, we show how to incorporate a parameter in the RM through fractional calculus in a natural way that considerably improves the efficiency of the scheme, but not at the cost of simplicity. We henceforth call it the fractional RM (FRM). Next, we establish a close kinship of the FRM with the prevalent SRM and demonstrate their comparative performance. For brevity, we do not employ here any sequence accelerator. This is because our purpose in hand is not to extract highly accurate values of X or λ; rather, we would like to stress the properties and efficiency of the FRM. Finally, we demonstrate that fractional differentiation of (1) may often provide superior estimates of X through the DPA. This strategy is referred to here as the fractional DPA (FDPA). The FDPA reveals yet another practical advantage of the calculus.

2. The scheme

Here, we first briefly survey the salient features of the RM and the SRM, and then proceed to introduce the FRM and the FDPA. Note that, if (2) holds strictly, then one can write

$$
\begin{equation*}
F(x)=A \sum_{n=0}\binom{\lambda}{n}(-1 / X)^{n} x^{n} \tag{3}
\end{equation*}
$$

where the binomial coefficient is to be evaluated by using a Γ function for non-integral λ. Let us mention at this point that we shall consider here both an unbiased scheme such as the RM, the SRM or the FRM, and part of a biased scheme such as the DPA or the FDPA. In an unbiased scheme, one evaluates the unknown quantities such as X and λ independently. In a biased approach, in contrast, employing an assumed or known value for X, the sequence for λ, for example, is constructed. Specifically, we shall explore how a better value of X can be found from the ratios. So, part of our concern remains unbiased.

2.1. The RM and the SRM

From the definition of R_{n}, coupled with (3), it follows that

$$
\begin{equation*}
R_{n}=\frac{1}{X}\left(1-\frac{\lambda+1}{n}\right) \tag{4}
\end{equation*}
$$

Taking two different n values, we can solve (4) to get X and λ. Now, n can be varied to generate two different sequences of estimates for X and λ. For close-packed lattices, it is customary to choose consecutive n values, while the odd and even R_{n} sequences are first separated for loose-packed lattices, before solving (4). This strategy is known as the RM. The situation in most cases, however, is not so simple. Higher-order terms in $1 / n$ are indeed present within the parentheses of (4). A major reason is that (2) is an approximation for most practical purposes. Confluent singularities are often believed to be present. Then, $F(x)$ is given instead by

$$
\begin{equation*}
F(x)=\sum_{j=1} A_{j}\left(1-\frac{x}{X}\right)^{\lambda_{j}} \tag{5}
\end{equation*}
$$

where $\lambda_{1}<\lambda_{2}<\lambda_{3}$, etc. These other subdominant singularities, defined by the exponents λ_{2}, λ_{3}, etc, affect the convergence of R_{n}, and hence of the sequences obtained for X and λ_{1}, when N is not large enough. A more general form for $F(x)$ is

$$
\begin{equation*}
F(x)=\sum_{j=1} A_{j}\left(1-\frac{x}{X_{j}}\right)^{\lambda_{j}} \tag{6}
\end{equation*}
$$

Guttmann [4] discussed at length such types of complications. However, a special case of (6) deserves more attention [9]. It corresponds to an antiferromagnetic singularity, in addition to the ferromagnetic one that is being studied. In this situation, j in (6) runs up to 2 and $X_{1}=-X_{2}$. It is characteristic of loose-packed lattices. Now, an important point is that the form (5) or (6) does not lead to (4). Even if one chooses a much simpler situation allowing merely a slow variation in the amplitude A, i.e.

$$
\begin{equation*}
F(x)=A(x)\left(1-\frac{x}{X}\right)^{\lambda} \tag{7}
\end{equation*}
$$

where $A(x)$ can be expanded in the form $A(x)=A(X)+(x-X) A^{\prime}(X)+\cdots$ as $|x| \rightarrow X$, one finds

$$
\begin{equation*}
R_{n}=\frac{1}{X}\left(1-\frac{\lambda+1}{n}+\mathrm{O}\left(1 / n^{2}\right)\right) \tag{8}
\end{equation*}
$$

In other words, a series in $1 / n$ appears in the parentheses now. Therefore, the RM cannot converge rapidly. By introducing an ad hoc shift in n, the SRM tries to remedy the error. One writes

$$
\begin{equation*}
R_{n}=\frac{1}{X}\left(1-\frac{\lambda+1}{n+s}\right) \tag{9}
\end{equation*}
$$

so that, on expansion ($s \ll n$), (9) becomes structurally similar to (8). Earlier [5], the parameter s was set fixed at 0.5 . However, we can also solve (9) [8] for X and λ, by taking three successive R_{n} and n values. Specifically, one obtains

$$
\begin{equation*}
X=-\frac{\Delta^{2} R_{n}}{R_{n+2} \Delta R_{n}-R_{n} \Delta R_{n+1}} ; \quad \lambda=\frac{\left(1-X R_{n}\right)\left(1-X R_{n+1}\right)}{X \Delta R_{n}}-1 \tag{10}
\end{equation*}
$$

In (10), Δ is the standard forward difference operator, defined by $\Delta g(n)=g(n+1)-g(n)$, $g(n)$ being some function of n. One may obtain a value for s at each step as well, if one likes, though it is not necessary. The procedure is essentially the same as that of the RM, outlined below (4). However, it often yields much better results than the parent version.

2.2. The FRM

We define the fractional differentiation process by

$$
\begin{equation*}
D^{p} y^{m}=\frac{\Gamma(m+1)}{\Gamma(m+1-p)} y^{m-p} \tag{11}
\end{equation*}
$$

where p may be a non-integer now. This fractional operator in (11) corresponds to the Riemann-Liouville version [17, 18]. Based on such a prescription, we differentiate (2) p times to obtain

$$
\begin{equation*}
D^{p} F(x)=A^{\prime}\left(1-\frac{x}{X}\right)^{\lambda-p} \tag{12}
\end{equation*}
$$

Here, A^{\prime} is the new amplitude. Applying the RM on this transformed form (12), we would find new ratios $R_{n}(p)$ described by

$$
\begin{equation*}
R_{n}(p)=\frac{1}{X}\left(1-\frac{\lambda+1-p}{n}\right) \tag{13}
\end{equation*}
$$

analogous to (4), but with a changed exponent. On the other hand, we find from (1) that

$$
\begin{equation*}
D^{p} F(x)=A \sum_{n=0}\binom{\lambda}{n}(-1 / X)^{n} \frac{\Gamma(n+1)}{\Gamma(n+1-p)} x^{n-p} \tag{14}
\end{equation*}
$$

Direct calculation of the ratios following (14) gives

$$
\begin{equation*}
R_{n}(p)=R_{n} \frac{n}{n-p} \tag{15}
\end{equation*}
$$

We can now combine (13) and (15) to write

$$
\begin{equation*}
R_{n}=\frac{1}{X}\left(1-\frac{\lambda+1-p}{n}\right) \frac{n-p}{n} . \tag{16}
\end{equation*}
$$

This is the required FRM equation where the parameter p has been embedded in a natural way. As before, we take three successive R_{n} and n to solve for X and λ at each step. This leads to the following results:

$$
\begin{equation*}
X=\frac{2}{\Delta^{2}\left(n^{2} R_{n}\right)} ; \quad \lambda=2 n-X \Delta\left(n^{2} R_{n}\right) \tag{17}
\end{equation*}
$$

Thus, one may avoid the estimation of p. However, if one wishes, a pair of values for p could be obtained at each step.

A few points regarding the FRM are now in order. First, it takes care of the $1 / n^{2}$ term that was lacking in (4). Convergence is thus expected to be much better than for the RM. Secondly, for large n, the FRM becomes equivalent to the SRM. This is because terms of order $1 / n^{3}$ and higher, present in the SRM, tend then to zero. Thirdly, a close look at (16) reveals that, if p_{1} is a solution, $\left(\lambda+1-p_{1}\right)$ is another solution. Stated otherwise, there exist two p values, p_{1} and p_{2}, each satisfying (16), where

$$
\begin{equation*}
p_{1}+p_{2}=\lambda+1 \tag{18}
\end{equation*}
$$

In (18), the quantities λ and X refer to solutions of (16) at a particular stage. The symmetry of (16) is indeed responsible for the emergence of these two possible solutions of p. For future convenience, we shall designate by p_{1} the larger solution of (16), i.e. $p_{1}>p_{2}$. The significance of the two solutions will concern us later too. Nevertheless, as we commented before, one can eliminate p while employing (16) on three successive R_{n} values, as (17) shows. Thus, it is ultimately not necessary to pay attention to possible values of p, unless the situation demands it.

2.3. The FDPA

Given a partial sequence $\left\{R_{j}\right\}$, there is a standard recipe [11, 12] to construct the DPAtransformed partial sequence $\left\{T_{k}\right\}$. The total number of terms in the latter case, however, is roughly halved. Let us suppose that k in $\left\{T_{k}\right\}$ runs from 1 to K. Then, one way to judge the convergence of any transformed sequence is provided by the quantity

$$
\sum_{k=1}^{K}\left|T_{K}-T_{k}\right|
$$

A better convergence will imply a smaller value of the above sum, for a fixed K. In the present case we make two modifications. As stated before, the required result for X is actually given by the limit of the inverse of either sequence. So, after making the transformation, we take the inverse of each member and estimate the index of convergence through a quantity δ, given by

$$
\begin{equation*}
\delta=\sum_{k=1}^{K}\left|T_{K}^{-1}-T_{k}^{-1}\right| \tag{19}
\end{equation*}
$$

The second modification has its root in (15). Once the series (1) is p-times differentiated, the new ratios forming the parent sequence $\left\{R_{n}(p)\right\}$ are related to the old ones by (15) but the value of X does not change (see (12)). For a particular value of p, the DPA-transformed sequence of $\left\{R_{n}(p)\right\}$ can be obtained by following the standard route. These will likewise be called $\left\{T_{k}(p)\right\}$. Therefore, $T_{k}(p)$ is an FDPA transform of $\left\{R_{n}\right\}$. The estimate δ in (19) will now depend on p. This brings forth an advantage over the plain DPA transforms (at $p=0$). One may vary p to minimize δ, thus obtaining the 'best' transformed sequence. Indeed, we shall see that this simple prescription improves the quality of X considerably in many situations. Further, unlike the FRM, one finds here a unique value of p. Finally, it is obvious that the s shift in the SRM cannot provide any benefit in such a context.

3. Results and discussion

We consider first the high-temperature reduced magnetic susceptibility series for a few Ising spin- $1 / 2$ lattice models. The variable x in (1) then stands for $\tanh (J / k T)$, where J is the spinspin coupling constant, k is the Boltzmann constant and T refers to the absolute temperature.

Table 1. Adequacy of the RM, SRM and FRM in simulating the overall variation of R_{n} with n for the series F1 and F2 (see the text) via a fitting procedure.

Series	Method	X	λ	CC
F1	RM	0.263862	-1.599109	0.998106
($N=16$)	SRM	0.268193	-1.762178	$\begin{aligned} & 0.999985 \\ & (s=0.250) \end{aligned}$
	FRM	0.267895	-1.745048	$\begin{aligned} & 0.999993 \\ & \left(p_{1}=0.153\right) \\ & \left(p_{2}=-0.898\right) \end{aligned}$
F2	RM	0.996521	-1.204758	0.998920
($N=20$)	SRM	0.999852	-1.240907	$\begin{aligned} & 1.000000 \\ & (s=0.179) \end{aligned}$
	FRM	0.999681	-1.238101	$\begin{aligned} & 1.000000 \\ & \left(p_{1}=0.100\right) \\ & \left(p_{2}=-0.338\right) \end{aligned}$

We also choose two test series, considered earlier by Graves-Morris [9], which have close correspondences with the former ones. Coefficients f_{n} of expansion (1) up to $n=N$ are known for triangular, face-centred cubic (fcc), body-centred cubic (bcc) and simple cubic (sc) lattices [4]. The series for the triangular lattice is henceforth designated by F , for convenience. Model 2 of [9] illustrates how the Curie point λ is affected by the presence of a confluent singularity. We designate this series by F 2 . It has the form (5) with j running up to 2 , $A_{1}=1.0, A_{2}=0.1, X=1.0, \lambda_{1}=-1.25$ and $\lambda_{2}=-0.75$. Series F3, on the other hand, refers to model 1 of the same work [9]. It reveals the role of an antiferromagnetic singularity, corresponding to the Néel point, on the critical indices of a ferromagnetic phase transition. The form of F3 is similar to (6), but with just two terms. Thus, in this case, one takes $A_{1}=1.0$, $A_{2}=0.5, X_{1}=1.0, X_{2}=-1.0, \lambda_{1}=-1.25$ and $\lambda_{2}=-0.875$. As for a few other test cases, we next choose the chain-generating functions for self-avoiding walks on triangular [4], square [4] and sc [3] lattices. In such contexts, f_{n} in (1) stands for the number of n-step self-avoiding walks on a particular lattice.

Having discussed the series under investigation, we now proceed to study first the efficacy of the FRM and then the FDPA.

3.1. Fitting and the ratio-type methods

First, we note that equations (4), (9) and (16) refer respectively to the RM, the SRM and the FRM. They all try to reflect the variation of R_{n} with n. Therefore, we may examine how far these equations are adequate in describing the overall behaviour of R_{n} when all the terms are considered. Here, the series considered are simpler. We show the results of such a fitting in table 1. For F1, we take $N=16$ and notice that the correlation coefficient (CC) is closest to unity in the case of the FRM. Taking $N=20$ for the series F2, we find that the SRM and the FRM perform almost similarly. Exact values of X and λ are known in both cases: $X=1 /(2+\sqrt{ } 3)$ and $\lambda=-7 / 3$ in the triangular lattice problem (F1); $X=1.0$ and $\lambda=-1.25$ for F2. The derived estimates of these quantities, obtained via fitting, are, however, not quite satisfactory. A major reason behind this is, our fitting process has laid equal emphasis on all ratios, though it is known that initially these R_{n} values behave wildly [4]. They settle to reflect the proper behaviour of the singularity sought only after a sizable number of terms, depending on the problem to hand. Nevertheless, we note that outcomes of the SRM or the FRM are much better compared to the parent RM. This indirectly hints that (9) or (16) are much better suited in mimicking the variations of R_{n} with n. The worth of the present endeavour in highlighting the

Figure 1. Plot of s versus p_{1} (see text) showing the expected parabolic dependence. In the case of the triangular lattice referring to series F1 (curve 1), points are shown by crosses while circles refer to the series F2 (curve 2), both corresponding to the results presented in table 2.
efficiency of the FRM is thus partially justified. The table also shows the optimum values of s and $p\left(p_{1}\right.$ and $\left.p_{2}\right)$. We find that s and p_{1} are reasonably close, though n is not large enough.

3.2. The role of the parameters in the SRM and the FRM

We now explore any relation between s and p, the two essential parameters embedded in the modifications of the RM. To this end, we equate (9) and (16) for a particular n value with the assumption that X and λ are fixed quantities. This leads to the equation

$$
\begin{equation*}
p^{2}-(\lambda+1) p+\frac{(\lambda+1) n s}{n+s}=0 \tag{20}
\end{equation*}
$$

A few interesting consequences of (20) are in order. First, we rediscover that the two roots of p, p_{1} and p_{2}, satisfy (18). Second, the expression for the product $p_{1} p_{2}$ yields, after a little rearrangement,

$$
\begin{equation*}
\frac{1}{s}=\frac{1}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{n} \tag{21}
\end{equation*}
$$

It reveals that, at large n, s is really half the harmonic mean of p_{1} and p_{2}. Third, in common situations, where $s>0$ and $(\lambda+1)<0$, the larger root p_{1} obeys $0<p_{1}<s$ if n is large. We thus see the role of s in providing a bound for p in the FRM. Finally, from (20), we also find that, in the large- n regime, the parameter s satisfies $s=p_{1} p_{2} /(\lambda+1)$. Coupled with (18), it implies that a plot of s versus p_{1} would be parabolic in nature. In figure 1 , we show such a plot for series F1 and F2. They correspond to the results to be found in table 2. Although n is never very large, we happily notice that the plots are essentially parabolic in both cases. It now remains to uncover the significance of the two roots p_{1} and p_{2}. To this end, we take a simple function $(1-x)^{\lambda}$. Then R_{n} is given exactly by $R_{n}=1-(\lambda+1) / n$. Therefore, one finds $s=0$ in the SRM; in other words, no shift is necessary here. By (20), we next find that $p_{1}=0$ and $p_{2}=\lambda+1$. The first solution clearly hints that one need not differentiate the series and

Table 2. Sequential estimates of X and λ by solving the RM, SRM and FRM equations for the series F1 and F2 (see text).

	X										λ		
N	RM	SRM	FRM	RM	SRM	FRM							
(F1)													
10	0.267468	0.267875	0.267866	-1.715169	-1.745489	-1.744495							
11	0.267568	0.268033	0.268020	-1.719180	-1.757365	-1.755823							
12	0.267636	0.267982	0.267974	-1.722142	-1.753178	-1.752160							
13	0.267683	0.267951	0.267946	-1.724409	-1.750360	-1.749651							
14	0.267721	0.267948	0.267944	-1.726317	-1.750055	-1.749463							
15	0.267751	0.267951	0.267947	-1.727979	-1.750319	-1.749797							
16	0.267776	0.267952	0.267949	-1.729435	-1.750476	-1.750015							
(F2)													
10	0.999348	0.999856	0.999843	-1.231604	-1.241484	-1.241148							
11	0.999442	0.999875	0.999865	-1.232567	-1.241856	-1.241563							
12	0.999515	0.999890	0.999882	-1.233392	-1.242185	-1.241925							
13	0.999574	0.999902	0.999896	-1.234108	-1.242479	-1.242244							
14	0.999621	0.999912	0.999907	-1.234739	-1.242742	-1.242529							
15	0.999661	0.999921	0.999916	-1.235300	-1.242980	-1.242785							
16	0.999694	0.999928	0.999924	-1.235802	-1.243196	-1.243017							
17	0.999721	0.999935	0.999931	-1.236256	-1.243394	-1.243228							
18	0.999745	0.999940	0.999937	-1.236669	-1.243575	-1.243420							
19	0.999766	0.999945	0.999942	-1.237046	-1.243743	-1.243598							
20	0.999784	0.999949	0.999946	-1.237393	-1.243898	-1.243761							

should be satisfied with the RM results. The other solution, however, insists on a ($\lambda+1$)-times differentiation. Once it is done, we obtain a series where the ratios do not depend on n at all. Thus, we extract the actual answer simply from the first ratio! Here lies the advantage of the second solution.

3.3. Comparative performance of the SRM and the FRM

We now turn our attention to sequential estimates of X and λ. This requires us to proceed through the strategy of solving equations like (10) and (17). For the RM, a similar pair of equations follows. In table 2, we display such results for the two cases, F1 and F2, discussed above. It is notable that the FRM yields results very close to those of the SRM in both cases. This conclusion applies to X as well as λ. These estimates, especially those of the exponents, are again much better in quality than what we get via the RM.

In table 3, we summarize the results found for other systems. In the fcc case, the scheme applies straightforwardly. However, antiferromagnetic singularities are present in sc, bcc and F3. So, the ratios oscillate and we first separate the odd and even ratios. Then, we employ the RM by taking two consecutive terms of the separated sequences. Likewise, the SRM and the FRM are applied by involving three such consecutive terms in each sequence. Here, only the last results are displayed. It is customary to apply a sequence accelerator to each (odd or even) such sequence of X or λ values and then take an average. However, here the estimates are simply averaged and yet we note that the average values (denoted by 'avg' in the table) are close to the actual ones $[4,8,9]$ when the SRM or the FRM is employed. The two modified schemes again perform comparably. The advantage is clearer with estimates of λ.

Having realized that antiferromagnetic singularities affect more adversely [9] the estimation of the critical exponent, and that the initial oscillations of a series may lead to

Table 3. Critical indices for fcc, sc and bcc lattices, and the test series F3 (see text), obtained by adopting the different schemes. Except for the fcc case, final results are found after separating the even and odd terms. The average estimates (avg) are considered useful.

N		X			λ		
		RM	SRM	FRM	RM	SRM	FRM
(fcc)							
14		0.101734	0.101728	0.101728	-1.246767	-1.245268	-1.245261
(sc)							
	odd	0.218303	0.218147	0.218140	-1.266885	-1.249834	-1.248792
14	even	0.217991	0.218173	0.218162	-1.233 050	-1.255474	-1.253725
	avg	0.218147	0.218160	0.218151	-1.249967	-1.252654	-1.251259
(bcc)							
	odd	0.156222	0.156106	0.156101	-1.262991	-1.245325	-1.244 186
14	even	0.155994	0.156118	0.156111	-1.228414	-1.249585	-1.247990
	avg	0.156108	0.156112	0.156106	-1.245702	-1.247455	-1.246088
(F3)							
	odd	0.999183	0.999819	0.999737	-1.093222	-1.117594	-1.113248
20	even	1.000829	1.000256	1.000237	-1.408343	-1.386631	-1.385624
	avg	1.000006	1.000037	0.999987	-1.250783	-1.252112	-1.249436

Table 4. Variation of the average estimate of the critical exponent with N for the series F3 (see text) in different schemes.

	λ		
N	RM	SRM	FRM
10	-1.251587	-1.272893	-1.248282
20	-1.250783	-1.252112	-1.249436
30	-1.250491	-1.251144	-1.249685
40	-1.250352	-1.250850	-1.249786
50	-1.250271	-1.250712	-1.249839
60	-1.250219	-1.250631	-1.249872
70	-1.250183	-1.250577	-1.249894
80	-1.250156	-1.250539	-1.249910
90	-1.250136	-1.250510	-1.249922
100	-1.250	120	-1.250487

unreliable answers [4] if N is not large enough, we now analyse the series F3 in greater detail. These results are succinctly presented in table 4 . We notice that the average values follow a systematic trend in all cases. It is important to observe that the plain RM all along performs better than the SRM here. In addition, both the SRM and the RM approach the exact answer from below. On the other hand, the FRM works best even when N is not very large, and it tends to exactness from above.

We now consider the problem of self-avoiding walks. Table 5 displays results for the triangular lattice case. The D log PA method yields [4] closely: $X=0.24088$ and $|\lambda|<1.335$, on average. Our estimate of λ seems better in view of the discussion in [4]. In the case of a square lattice, results [4] of the $\mathrm{D} \log \mathrm{PA}$ again show that the average estimate of $|\lambda|$, ranging from 1.337 to 1.34 , is lower than expected. Our data in table 6 reveal $|\lambda|>1.3414$, implying that we are closer to the exact value of 1.34375 . The closeness is also true of X, though the improvement is marginal. We should also point out that the usual odd-even separation of the

Table 5. Critical indices for self-avoiding walks on a triangular lattice ($N=20$). The table shows the last 10 results.

RM		SRM		FRM	
λ	X	λ	X	λ	X
-1.317820	0.240681	-1.301855	0.240499	-1.301170	0.240493
-1.320162	0.240731	-1.345869	0.240992	-1.344310	0.240980
-1.320 588	0.240740	-1.325470	0.240786	-1.325411	0.240785
-1.321481	0.240756	-1.332771	0.240854	-1.332 464	0.240852
-1.322419	0.240771	-1.335309	0.240876	-1.334913	0.240874
-1.323184	0.240783	-1.334437	0.240869	-1.334136	0.240868
-1.323979	0.240795	-1.336519	0.240885	-1.336149	0.240883
-1.324707	0.240805	-1.336939	0.240888	-1.336588	0.240886
-1.325 392	0.240814	-1.337606	0.240892	-1.337258	0.240891
-1.326038	0.240822	-1.338228	0.240896	-1.337883	0.240895

Table 6. Critical parameters of series for self-avoiding walks on a square lattice ($N=27$). The odd and even ratios are separately studied. The table shows the last 10 average results.

RM (avg)		SRM (avg)		FRM (avg)	
λ	X	λ	X	λ	X
-1.285815	0.377236	-1.535342	0.380975	-1.282455	0.376823
-1.305585	0.378280	-1.396772	0.380180	-1.358312	0.379548
-1.317440	0.378717	-1.408145	0.380027	-1.369441	0.379598
-1.321338	0.378820	-1.390041	0.379558	-1.346395	0.379142
-1.322243	0.378831	-1.362164	0.379177	-1.332063	0.378919
-1.323611	0.378859	-1.347543	0.379066	-1.335618	0.378975
-1.325295	0.378891	-1.348997	0.379090	-1.340577	0.379033
-1.326711	0.378916	-1.348174	0.379081	-1.340980	0.379037
-1.327881	0.378935	-1.346503	0.379067	-1.340822	0.379035
-1.328921	0.378950	-1.345936	0.379064	-1.341393	0.379040

ratios is done before applying any of the three schemes to the square lattice case. Table 6 shows the average results only, for brevity. The cubic lattice case has been discussed in detail [3] quite recently. Using differential approximants, which are known to be more powerful [4], it was found [3] that $X \approx 0.213494$ and $|\lambda| \approx 1.1605$. These results are slightly better than those we furnish in table 7. Here too, odd and even ratios are first separated and we display the average results only. The FRM is seen to provide the closest answers. Subsequent application of a sequence accelerative transform is likely to improve our results further towards the 'assumed' exact values [3], viz, $X=0.213491$ and $|\lambda| \approx 1.1585$. In all the above cases, however, we have listed the last few results, avoiding insignificant fluctuations during the initial phase. The whole study makes it transparent that one gains a considerable advantage in most situations by adopting the SRM or the FRM, rather than the plain RM.

3.4. Comparative performance of the DPA and the FDPA

We finally focus attention on the FDPA. Here, we first choose a value of p, estimate $T_{k}(p)$ that are $[k / k]$ PA to the sequence $\left\{R_{n}(p)\right\}$ and then find δ via (19). The procedure is continued for various values of p until a minimum value of δ is attained. At $p=0$, DPA results follow. Figure 2 shows a sample variation of δ with p. This refers to the series F2 and $K=10$. We notice that a reasonably deep minimum is there. At $p=0$, we obtain $\delta=0.1$; the value of δ reduces to 0.0026 at $p=-0.235$. Table 8 shows the performance of both the

Figure 2. Variation of δ with p (see text) for the series F2 with $K=10$.

Table 7. Properties of series for self-avoiding walks on a sc lattice ($N=26$). The odd and even ratios are separately studied. The table shows the last 10 average results.

RM (avg)		SRM (avg)		FRM (avg)	
λ	X	λ	X	λ	X
-1.169154	0.213697	-1.166910	0.213674	-1.162597	0.213620
-1.163835	0.213524	-1.161469	0.213436	-1.151402	0.213339
-1.164373	0.213528	-1.174301	0.213597	-1.168438	0.213556
-1.164426	0.213526	-1.169589	0.213552	-1.165961	0.213531
-1.164 103	0.213519	-1.165943	0.213520	-1.163103	0.213506
-1.163 862	0.213514	-1.164994	0.213514	-1.162875	0.213504
-1.163665	0.213511	-1.164278	0.213509	-1.162631	0.213502
-1.163 489	0.213509	-1.163665	0.213505	-1.162334	0.213501
-1.163330	0.213507	-1.163192	0.213503	-1.162094	0.213499
-1.163186	0.213505	-1.162808	0.213501	-1.161886	0.213498

DPA and the FDPA. Although $T_{k}^{-1} \equiv T_{k}(0)^{-1}$ leads finally to a somewhat better value of X than the one provided by the bare sequence, the improvement is not enough. Even the RM yields a superior estimate, as is evident from table 2. Thus, DPA is not recommended in such a situation. The FDPA, on the other hand, performs better than the DPA. The advantage, therefore, is noticeable. The problem of self-avoiding walks will now be briefly considered. Results for the square lattice case are presented in table 9 and those for the sc lattice are shown in table 10. In both situations, we separate the odd and even ratios. In each group, there are 13 terms of a particular sequence, from which we can construct up to [6/6] PA. The tables show how far one can reduce δ by varying p. These separate estimates, on averaging, reveal considerable gains by proceeding through the FDPA. For the square lattice problem, the FDPA performs somewhat inferior to the RM. For the cubic lattice case, however, it works very successfully. Thus, the success of FDPA over the RM depends strongly on the nature of the

Table 8. Improved critical point sequences $\left\{T_{k}(p)^{-1}\right\}$ for the series F2 via the DPA $(p=0)$ and the FDPA ($p=-0.235$) at which δ is minimum. The inverse of the last ratio in the parent sequence is 0.98861 .

	X	
k	T_{k}^{-1}	$T_{k}(p)^{-1}$
1	0.947764	1.001346
2	0.975359	0.999801
3	0.985748	0.999626
4	0.990731	0.999621
5	0.993496	0.999560
6	0.995188	1.000060
7	0.996298	0.999885
8	0.997065	0.999877
9	0.997586	0.999872
10	0.997798	0.999874

Table 9. Improved critical point sequences $\left\{T_{k}(p)^{-1}\right\}$ for self-avoiding walks on a square lattice via the DPA $(p=0)$ and the FDPA for some p at which δ is minimum. The even and odd ratios are separately studied.

	T_{k}^{-1}			$T_{k}(p)^{-1}$		
k	Odd $(\delta=0.031)$	Even $(\delta=0.023)$	Avg	Odd $\begin{aligned} & (p=-0.372) \\ & (\delta=0.0016) \end{aligned}$	Even $\begin{aligned} & (p=-0.229) \\ & (\delta=0.0036) \end{aligned}$	Avg
1	0.355932	0.364784	0.360358	0.378739	0.378570	0.378654
2	0.378291	0.371315	0.374803	0.378450	0.377036	0.377743
3	0.372601	0.375839	0.374220	0.379347	0.377729	0.378538
4	0.380346	0.375599	0.377973	0.379281	0.377616	0.378449
5	0.376020	0.376002	0.376011	0.379282	0.378146	0.378714
6	0.376683	0.377342	0.377013	0.379324	0.378526	0.378925

Table 10. Critical point sequences $\left\{T_{k}(p)^{-1}\right\}$ for self-avoiding walks on a sc lattice via the DPA ($p=0$) and the FDPA for some p at which δ is minimum. The even and odd ratios are separately studied.

	T_{k}^{-1}			$T_{k}(p)^{-1}$			
	Odd	Even			Odd $(p=-0.1914)$	Even $(p=-0.1326)$	
k	$(\delta=0.0104)$	$(\delta=0.0053)$	Avg		$(\delta=0.0008)$	$(\delta=0.0003)$	Avg
1	0.206287	0.209813	0.208050	0.213317	0.213417	0.213367	
2	0.210663	0.214118	0.212390		0.213748	0.213301	0.213525
3	0.212028	0.212235	0.212131		0.213750	0.213237	0.213493
4	0.212912	0.212769	0.212840		0.213725	0.213441	0.213583
5	0.212758	0.213023	0.212891		0.213557	0.213412	0.213484
6	0.213005	0.213008	0.213007	0.213571	0.213412	0.213491	

problem. Nevertheless, it is undoubtedly true that the FDPA works significantly better than the DPA under all circumstances. We can extract roughly two extra correct digits through this scheme. Indeed, at worst, the FDPA would perform similar to the DPA where δ is minimum at $p=0$. This is a rare possibility.

4. Conclusion

In summary, we have found here a way of modifying certain schemes for obtaining critical indices from power series expansions through the implementation of fractional calculus. Two variants are proposed. We call one the FRM, that goes beyond the RM, and it works well. In many situations, its performance is comparable with another popular prevalent scheme, the SRM. We have established here their kinship too. Our study reveals that there may exist situations where the SRM may perform worse than the parent RM. Table 4 presents a case in point. Genesis of the FRM, in turn, is clear and its workability is always found commendable. The other scheme has its origin in the DPA, and is designated the FDPA. While the performance of the DPA is never found to be comparable with that of any good variant of the RM, we demonstrate here how the FDPA can provide significantly better quality results than the DPA on quite a few occasions. Further exploration of the usefulness of fractional differentiation, especially through (12) and (14), may be worthwhile in the present context.

Acknowledgment

One of us (KB) acknowledges the partial financial assistance of DSA, UGC (India).

References

[1] Arteca G A, Fernandez F M and Castro E A 1986 J. Chem. Phys. 856713
Wang D, Mead L R and de Llano M 1991 J. Math. Phys. 322258
Vompe A G and Martynov G A 1997 J. Chem. Phys. 1066095
[2] Yang Y S, Thompson C J and Oitmaa J 1995 J. Phys. A: Math. Gen. 28365
[3] MacDonald D, Joseph S, Hunter D L, Moseley L L, Jan N and Guttmann A J 2000 J. Phys. A: Math. Gen. 33 5973
[4] Guttmann A J 1989 Phase Transitions and Critical Phenomena vol 13, ed C Domb and J L Lebowitz (New York: Academic) pp 1-234
[5] Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Academic) pp 181-243
[6] Domb C and Sykes M F 1957 Proc. R. Soc. A 240214 Domb C and Sykes M F 1961 J. Math. Phys. 263
[7] Zinn-Justin J 1979 J. Physique 4063
Zinn-Justin J 1981 J. Physique 42783
Privman V 1986 J. Phys. A: Math. Gen. 192377 Igloi F 1986 J. Phys. A: Math. Gen. 193077
[8] Fernandez F M, Arteca G A and Castro E A 1986 Physica A 137639
[9] Graves-Morris P R 1988 J. Phys. A: Math. Gen. 211867
[10] Nickel B 1999 J. Phys. A: Math. Gen. 323889 Nickel B 2000 J. Phys. A: Math. Gen. 331693
[11] Baker G A Jr and Graves-Morris P R 1981 Encyclopaedia of Mathematics vol 13, ed G C Rota (Reading, MA: Addison-Wesley) pp 1-325
[12] Sarkar B and Bhattacharyya K 1988 Chem. Phys. Lett. 150419
Sarkar B and Bhattacharyya K 1993 Phys. Rev. B 486913
[13] Sarkar B and Bhattacharyya K 1993 Chem. Phys. Lett. 204211
[14] Oldham K B 1969 Anal. Chem. 411904 Oldham K B 1972 Anal. Chem. 44196 Oldham K B 1973 Anal. Chem. 4539
[15] Jumarie G 1992 J. Math. Phys. 333536 Giona M 1992 J. Phys. A: Math. Gen. 25 2093, 2107
[16] Hilfer R 1991 Phys. Scr. 44321 Hilfer R 1992 Phys. Rev. Lett. 68190
[17] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley)
[18] Metzler R and Klafter J 2000 Phys. Rep. 3391

[^0]: 1 Author to whom any correspondence should be addressed.

